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Spatially embedded complex networks, such as nervous systems,
the Internet, and transportation networks, generally have non-
trivial topological patterns of connections combined with nearly
minimal wiring costs. However, the growth rules shaping these
economical tradeoffs between cost and topology are not well
understood. Here, we study the cellular nervous system of the
nematode worm Caenorhabditis elegans, together with informa-
tion on the birth times of neurons and on their spatial locations.
We find that the growth of this network undergoes a transition
from an accelerated to a constant increase in the number of links
(synaptic connections) as a function of the number of nodes (neu-
rons). The time of this phase transition coincides closely with the
observed moment of hatching, when development switches meta-
morphically from oval to larval stages. We use graph analysis and
generative modeling to show that the transition between differ-
ent growth regimes, as well as its coincidence with the moment of
hatching, may be explained by a dynamic economical model that
incorporates a tradeoff between topology and cost that is contin-
uously negotiated and renegotiated over developmental time. As
the body of the animal progressively elongates, the cost of longer-
distance connections is increasingly penalized. This growth process
regenerates many aspects of the adult nervous system’s organiza-
tion, including the neuronal membership of anatomically prede-
fined ganglia. We expect that similar economical principles may be
found in the development of other biological or manmade spa-
tially embedded complex systems.
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In the past decade or so, an abundance of studies have demon-
strated that superficially diverse systems share important statis-

tical properties (1–4). Movie costar networks, transport and
communication systems, gene–gene interactomes, and many other
natural and manmade systems have similarly complex topological
features: they generally are efficient, small-world, modular systems
with a greater-than-random probability of highly connected nodes
or hubs. Many but not all of these topologically complex systems
also are spatially embedded (5). For example, both the Internet
and the World Wide Web have nontrivial topologies, but only the
Internet is physically instantiated as a network in a metric space.
Spatially embedded networks generally increase in cost with in-
creasing distance of connections between nodes; and this cost
constraint must be traded off against the functional advantages of
topological features such as hub nodes, robustness, and high global
efficiency, that may add value but at greater than minimal cost (6).
Nervous systems share these general economical properties (7): at
all scales of space and time and in all species, brain networks likely
are both parsimoniously wired (8) and topologically complex (3).
This was first demonstrated in the case of the network of

neurons comprising the nervous system of the nematode worm,
Caenorhabditis elegans (9, 10). The brain of the hermaphrodite
worm consists of 279 neurons (excluding the pharyngeal neurons)
and is a sparse network (4%ofmaximum connection density), with

most connections being between cells separated by short distances
(<10% of the overall body length of the adult worm). Both sparse
connection density and low connection distance are as expected by
the operation of a parsimonious drive to minimize wiring cost.
However, the wiring cost of the C. elegans connectome is not
strictly minimized (11–13): further reductions of connection dis-
tance may be achieved by rewiring the biological network in silico,
but only at the expense of increasing the shortest topological path
between neurons (14), thus reducing the overall system efficiency.
To put it another way, it seems there is a tradeoff between con-
nection distance and topological efficiency in the organization of
the adult nematode worm’s nervous system. Topological efficiency
is theoretically advantageous for globally integrated information
processing and coordinated behaviors, but it is disproportionately
expensive to engineer (7, 15). It is arguable that such economical
tradeoffs between topological value and physical cost likely are
a general selection pressure on formation of spatially embedded
and topologically complex networks. More specifically, we pre-
dicted that economical principles applied dynamically over the
course of developmental time (hundreds of minutes after fertil-
ization) might provide a reasonable account of the emergence of
multiple observed features of the growth and adult configuration
of the nematode’s nervous system.

Results
Here, we investigate the growth of the C. elegans connectome,
from the moment of fertilization through hatching of the egg and
larval elongation to adulthood (16, 17). Importantly, we note that
the physical distances between neurons increase as a function of
the increasing overall length of the worm’s body as it matures (Fig.
1A). The cells of the adult nervous system are concentrated in the
head and the tail of the worm, with a series of neurons running
along the length of the body to innervate local muscle groups (the
ventral cord). This system may be decomposed into 10 ganglia (or
neuronal groups) based on anatomical properties (18, 19) (Fig.
1B). The birth times of each neuron tend to cluster in two time
windows, separated by a “quiet” period that includes the time
of hatching (800 min after fertilization) (Fig. 1C). The develop-
mental changes in the number of nodes (N) and edges (K) in the
network occur in the context of progressive elongation of the
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worm’s body, from less than 50 μm before hatching to more than
1 mm in the adult.
The two growth spurts in neuronal number, before and after

hatching, are paralleled by a roughly synchronous increase in the
total number of synaptic connections between neurons (Fig. 1C).
However, the form of the relationship between N and K evi-
dently is different before and after hatching, as shown in Fig. 1D.
The initial increase in K is well described by a quadratic function
of N, implying that the average node degree increases linearly as
the network grows (Fig. 1D, Inset). Then, at N ’ 200, hatching
takes place, marking the metamorphic change of the worm from

egg to larva. This event coincides with a discontinuous change in
growth rules: after hatching, K increases linearly with N, so the
average node degree remains constant. This experimental evi-
dence suggests that sharp qualitative changes can indeed affect
the growth rules governing the development and the formation
of complex networks (1, 2, 20). In this case, the transition from
one growth regime to another coincides with a metamorphic
change of the worm, from egg to larva.
Although it is tempting to assume that it is a biological “trigger”

or discontinuity associated with hatching that underlies the emer-
gence of this biphasic growth curve, here we have assessed the ability

Fig. 1. Development of the C. elegans nervous system. (A) C. elegans reaches maturity roughly 63 h after fertilization. During this time, its body length
increases from 50 μm to 1; 130 μm (22–24). (B) In the adult hermaphrodite worm, more than 60% of the neurons are located in the head and about 15% are
found in the tip of the tail (based on data modified according to ref. 17, axis arbitrarily centered such that the origin is at the base of the head). Neurons are
colored by ganglion membership (16): anterior [A], dorsal [B], lateral [C], ventral [D], retrovesicular [E], ventral cord [G], posterior lateral [F], preanal [H],
dorsorectal [J], and lumbar [K]. (C) The total number of neurons (N, solid black), and connections (K, dashed blue), grows rapidly between 250 and 500 min
after fertilization. Another burst of neurogenesis is observed at the end of the L1 larval stage (using data from ref. 17). (D) Plotting the number of synapses as
a function of the number of neurons (yellow ●) reveals the presence of a phase transition. Before hatching, K grows as N2 (solid blue line), whereas after
hatching, K grows linearly with N (dashed green line). (Inset) Plot of the average nodal degree vs. N.

Fig. 2. Modeling network growth. (A) The linear preferential attachment model (BA, blue ■) fails to reproduce the biphasic growth observed (solid line). (B)
In the BAG model (magenta ■) and the HAG model (dashed blue line), the average node degree increases linearly with the size of the network. (C) The ESG
model (green ■) exhibits a biphasic behavior, yielding a transition from quadratic to nearly linear growth at N(180, but fails to capture the details of the
observed growth. (D) The ESTG model (red ■) accurately reproduces the details of the biphasic growth trajectory; for example, the inflection point of the
modeled developmental curve corresponds closely to the moment of metamorphosis (hatching). The red dashed line in each panel indicates the number of
nodes at the time of hatching ðN ’ 200Þ. The SE of each growth curve is smaller than the size of the symbols used to plot it and is not reported.
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of several simple and continuous models of network formation to
reproduce this observed behavior without incorporating further
biological detail (Fig. 2 and Materials and Methods). We deliber-
ately decided to restrict ourselves to stochastic one-parameter
models: first, because our aim was to isolate the fundamental
ingredients that might be responsible for the observed discon-
tinuous growth, and second, because as we show in the following,
a one-parameter model indeed was enough to reproduce both the
biphasic growth and many of the structural properties of the adult
C. elegans neuronal network.
The first model we considered was the linear preferential at-

tachment model, introduced by Barabási and Albert (BA) (20),
which has been used successfully to describe the development of
many different complex networks, from the World Wide Web to
the Internet and citation networks. The BAmodel assumes that the
growth of a network is driven only by its topological properties:
specifically, newborn neurons are more likely to form connections
to neurons that are already well connected. This model predicts
a linear relationship between N and K, which closely matches the
posthatching phase of worm brain development but does not
provide a satisfactory fit to the prehatching phase. Conversely, the
binomial accelerated growth (BAG)model, which assumes that the
probability of a connection between a new neuron and any pre-
existing neuron is constant, predicts that K increases as a quadratic
function ofN (21). Similarly, we observe a quadratic dependence of
K on N also in a modified version of accelerated growth [hidden-
variable accelerated growth (HAG)], which additionally repro-
duces the node degree distribution of the adult worm. Accelerated
growth models thus can reproduce the prehatching phase of the
worm brain’s growth but fail to accommodate the transition to
linear scaling of K with N in the posthatching phase.
We found that economical tradeoff models that account for

the spatial location of neurons while allowing some long-distance
connections to high-degree nodes could reproduce biphasic growth
more accurately. As a first approximation, we defined the econom-
ical spatial growth (ESG) model, which assumes that the proba-
bility of a connection forming between newborn neuron i and
preexisting neuron j is a product of the degree of the jth node in
the adult nervous system, and a decreasing exponential function
of the Euclidean distance dðadÞi;j between nodes i and j in the
adult worm. Although the modeled growth exhibits two phases,
the transition between quadratic and linear phases occurs before
hatching. Therefore, we considered a more refined economical
spatiotemporal growth (ESTG) model where di;j is estimated by
the Euclidean distance between neurons i and j at the time of birth
of the newborn neuron, thereby adjusting for the fact that the
connection distance between any pair of neurons will be shorter at
earlier stages of development, before the worm becomes elongated.
We extrapolated the position of each neuron during growth from its
position in the adult worm, assuming that each neuron’s position
was shifted along the longitudinal axis in proportion to the overall
changes in body length (Fig. 1A), which we collated from the lit-
erature (ref. 22 for the prehatching stage and ref. 23 after hatching)
using a linear interpolation between larval stages (24). Although
the penalty on connection distance remains fixed in this model, its
effect on connectivity as a function of the overall scaling of the
system is evolving dynamically. Indeed, the tradeoff between
distance and topological degree is increasingly biased in favor of
minimizing connection distance as development proceeds and the
worm becomes longer overall. The model provides an excellent fit
to the two observed scalings of K as function ofN in the biological
data, including a good approximation of the moment of hatching
to the transition point from one growth regime to the other.
This suggests that the discontinuity in the growth curve is not

explained by biological triggers related to hatching but instead is
a consequence of the spatial properties of the system. In particular,
the average distance of newly born neurons relative to all other
neurons is much greater after hatching, so the distance penalty

term begins to dominate the tradeoff embodied in the spatial
growth rules. This is especially obvious in the ESTG model, in
which the worm’s elongation causes distances to increase in the
interim between the two bursts of neurogenesis. Note, however,
that a transition already is visible in the ESG model. This may be
explained by noting that most neurons born after hatching are
located along the body of the worm rather than in the head (SI
Appendix, section S1 and Fig. S1), so the average distance between
these newly born neurons and all others is again increased after
hatching.We also tested the ability of other one-parametermodels
to reproduce the observed growth curve (SI Appendix, section S2);
in particular, we tried to encode the cost of long connections
through a power-law decay instead of an exponential one, but none
of the alternative models could accommodate the abrupt change
in the functional relation between K and N with the same ac-
curacy obtained by ESTG (SI Appendix, section S4 , Table S-II,
and Fig. S2).
The ESTG model also provides a good account of several

other features of the adult nervous system’s organization, in-
cluding the statistical distributions of node degree, node efficiency,
and edge length in the adult worm brain (Fig. 3). According to
the results obtained through the computation of the symmetrized
Kullback–Leibler divergence, ESTG is the model that most
closely reproduces the distributions of node degree, edge length,
and node efficiency (SI Appendix, section S5, Table S-III, and
Figs. S3–S5).
Moreover, the model can provide a reasonable account of

finer-grained details of the adult system, such as the anatomical
variation in the average node degree and nodal efficiency along
the length of the worm. Networks simulated by the model also
had a mesoscopic structure closely resembling the pattern of
clustered connectivity between neurons belonging to one of 10
ganglia previously defined on biological grounds. Neurons be-
longing to the same ganglion in the worm brain tend to have high
connectivity with one another and relatively sparse connectivity
to neurons in other ganglia (18, 19). This biological pattern and
the neurons belonging to each specific ganglion were reproduced
quite accurately by the ESTG model (Fig. 3).

Discussion
We have shown that a fairly simple economical model was ade-
quate to account for many aspects of the spatial and topological
development of the nervous system of the nematode worm,
C. elegans. We describe this generative model as economical
because it represents the formation of synaptic connections proba-
bilistically as a tradeoff between topological value and wiring
cost. More specifically, the model accommodates the potentially
competitive tendencies of each new neuron to connect to topo-
logically important hub neurons, which may be a long distance
away (∼1 mm), versus connecting only to neurons that are spa-
tially adjacent (<0.1 mm), which will conserve wiring costs. Cru-
cially, in estimating the connection cost between pairs of neurons,
we have used prior data on the birth time of each neuron and the
progressive elongation of the worm’s body to estimate the dis-
tance between each pair of neurons at the time of synapse for-
mation. This measure of connection cost was traded off against
a topological bias (preferential attachment) for new neurons to
connect to high-degree hub neurons of the adult nervous system. As
the worm’s body progressively elongates, the cost penalty predom-
inates and long-distance connections, even to hub nodes, become
less likely. This simple but unique model of a dynamically evolving
economical tradeoff between cost and topology has allowed us to
reproduce a phase transition in the growth of the C. elegans cel-
lular connectome coinciding closely with the moment of hatching,
or metamorphic transition from egg to larval stages of develop-
ment. Dynamical economical growth processes also simulated
several aspects of the configuration of the adult nervous system.

7882 | www.pnas.org/cgi/doi/10.1073/pnas.1300753110 Nicosia et al.
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The principle that nervous systems conserve wiring costs dates
back to the seminal work of Ramón y Cajal in the 19th century,
and it has been experimentally validated and theoretically
developed extensively since then. Many aspects of brain orga-
nization, ranging from the placement of neurons in the adult
C. elegans nervous system (8) to the shape of dendritic trees (25)
and the modular architecture of large-scale human brain net-
works (26), have been attributed plausibly to a parsimonious
drive to minimize wiring costs. However, a strictly cost-minimal
network would have a regular, lattice-like topology. Synaptic
connections would be clustered between spatially and topologi-
cally neighboring neuronal nodes, with none of the long-distance
axonal projections needed to mediate topologically efficient
communication between widely separated neurons. However,
this is not a recognizable description of nervous system topology.
In many species, and at many scales of space and time, it has
been found that brain structural and functional networks have
a shorter average path length or greater efficiency than a regular
lattice. Brain networks also consistently have nonregular prop-
erties, such as high-degree hubs in a fat-tailed degree distribu-
tion, and a modular community structure entailing long-distance
intermodular connections between neurons in anatomically dis-
tributed modules. Many of these topological features are more
than minimally expensive or incur a premium in wiring cost, but
they may add value to the overall performance of the system. For
example, high-degree hub nodes of the C. elegans nervous system
include many of the so-called command interneurons that play
a key role in the adaptive function of coordinated forward and
backward movement of the worm (15, 16). Topological efficiency
of human brain networks has been positively correlated with

normal variation in IQ (more intelligent people tend to have
more efficient structural and functional networks) (7, 27).
Tradeoffs between cost and efficiency have been shown to be
heritable properties of human brain networks derived from
functional MRI (fMRI) data (28), and economical models of
network formation can reproduce the (somewhat different)
statistical properties of fMRI networks in both healthy adults and
patients with schizophrenia (29). These and other observations
support the general idea that nervous systems are selected to
negotiate an economical tradeoff between wiring cost (usually
measured by connection distance) and topological value (which
might be measured by degree, efficiency, or several other net-
work properties related to adaptive brain function).
Therefore, the basic principles of the economical model in-

vestigated here are not new to the neuroscience literature (7).
However, there are several distinctive aspects of our results.
Firstly, this work is an innovative demonstration that economical
models can account for the growth of a nervous system described
quite concretely and exactly at the cellular scale of synaptic con-
nections between neurons. Many of the previous studies of eco-
nomical tradeoffs in brain networks were based on analysis of
statistical associations (so-called functional connectivity) between
fMRI time series recorded at different spatial locations (28), or on
analysis of large-scale axonal projections rendered by tractography
algorithms applied to diffusion imaging data (30). Such human
neuroimaging results indicate that economical principles may ap-
ply to network formation at macroscopic scales, but the neuronal
substrate of networks based on imaging statistics remains un-
resolved. The demonstration here of economical principles ap-
plying to a connectome described with much greater precision at

Fig. 3. Local and mesoscopic network structures. (A) The distributions of node degree (Left, blue), connection distance (Center, red), and node efficiency
(Right, orange) of model-generated networks closely match those observed in the C. elegans neuronal network (shown in gray). (B) This panel shows how the
average node degree (Upper) and the average node efficiency (Lower) vary along the length of the C. elegans body (solid black lines) and in networks
generated using the ESTG model (red dashed lines). (C) Networks created using the ESTG model (Right) also reproduce the pattern of intra- and interganglia
connections observed in C. elegans (Left). Brighter colors indicate higher connection density; letters A–K denote neuronal ganglia as defined in legend to
Figure 1.
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a cellular scale somewhat validates the prior neuroimaging results.
Moreover, it suggests that the same competitive selection criteria
may inform nervous system formation over multiple spatial scales.
Brain networks may have a scale-invariant or fractal economy
of organization.
More broadly, these results are innovative in demonstrating

directly how simple economical growth models can provide
a reasonable account of complex growth curves, such as the
nonlinear processes of nervous system maturation and meta-
morphosis, from egg to adult worm. Nematodes, like all mem-
bers of the superphylum Ecdysozoa, develop through discrete
stages (egg, several juvenile stages, adult) separated by molting
events. The situation in C. elegans is most closely analogous to
hemimetabolous insects (with “incomplete metamorphosis”)
because the juvenile stages resemble the adults apart from the
absence of mating/reproductive structures. However, each molt
may be considered metamorphic, with the L1–L2 and L4–adult
molts, in particular, known to involve both the addition of new
cells and formation of new synaptic links. The special signifi-
cance of the egg–L1 transition perhaps has been less appreciated
up to now, and as such represents a unique finding of this work.
Our more realistic modeling of connection cost, taking into

account the changing spatial constraints during the growth of the
system, also shines a different light on the many previous studies
of connection cost (8, 11, 16) in this paradigmatic complex sys-
tem. Further work is needed to test the hypothesis that the
specific parameters of this model correspond to discrete molec-
ular or genetic signals. It is imaginable, for example, that a pen-
alty on long-distance connections might be biologically coded by
the spatial gradient of an axonally attractive molecule diffusing
from neurons, or that neurons destined to have high degree in
the adult system express distinctive cell surface markers from
birth that favor synaptic formation.
We have compared the performance of the dynamically evolving

economical model with that of several other models and, as
expected theoretically, found that simpler models based on pref-
erential attachment rules could reproduce one of the two phases of
network development (quadratic or linear) before or after hatch-
ing. However, only economical models that traded off connection
distance with preferential attachment bias could reproduce both
phases, and the timing of phase transition was reproduced accu-
rately only by the dynamic linkage between interneuronal connec-
tion distance and progressive developmental elongation of the
whole organism. For this reason, we consider that the modeling
results affirm our hypothetical prediction that development of
this cellular connectome can be accounted for by continual re-
negotiation of an economical tradeoff between connection cost and
the formation of high-degree hubs. This affirmation is conditional
on the caveat that not all possible models have been evaluated
comparatively. It is possible that a better model, perhaps in-
corporating a few more relevant biological details (such as type of
synapse, electrical or chemical), might be developed in the future.
We note that economical principles of network formation

demonstrated here for the growth of the nervous system of the
nematode worm are not necessarily limited to this system. Many
other systems, besides brains, are both spatially embedded and
topologically complex. We anticipate that economical growth
models of the potentially changing tradeoffs between physical
connection cost and topological value also may contribute to future
understanding of the development and evolution of transport,
computational, and infrastructural systems.

Materials and Methods
Data. We have used the most up-to-date map of the C. elegans connectome
(16), consisting of 279 somatic neurons interconnected through 6,393
chemical synapses, 890 gap junctions, and 1,410 neuromuscular junctions.
Because gap junctions often overlap with synapses and synaptic connections
often are reciprocated, we have considered only the backbone network, in

which all the synapses and gap junctions between each pair of neurons are
represented by a single undirected edge, obtaining a graph with N= 279
nodes and K =2; 287 edges in total (neuromuscular connections were ex-
cluded). Information about the growth of the neuronal network, particu-
larly the exact time of birth of each neuron, has been reconstructed from
recent literature (17).

Linear Preferential Attachment. The BA model assumes that the growth of
a network is driven solely by its topological structure, and produces random
graphs with a power-law degree distribution pk ∼ k−γ , where γ ’ 3 (20). In
the model, a new node is added at each time and is connected to m existing
nodes. The probability for the new node i to be connected to an existing
node j is a linear function of the degree kj , namely

ΠBA
i→j = kj=2K; [1]

where K denotes the total number of links when the new node arrives.
Because each node chooses m neighbors with which to connect, the total
number of links increases linearly with the size of the network, and the
average node degree remains constant.

Accelerated Topological Growth. Traditionally, network growth is said to be
accelerated if the average node degree increases with the size of the net-
work. Acceleration has been observed in many complex networks, and dif-
ferent models of scale-free networks with acceleration have been proposed
so far (21). We have considered two different accelerated growth models. In
the first model, called binomial accelerated growth (BAG), a new node i tries
to establish a connection with each of the existing nodes, and a link to node
j is created with probability p, namely

ΠBAG
i→j =p: [2]

The BAG model produces networks in which the number of links increases as
the square of N. In fact, the expected number of links established when the
network has N nodes is

KðNÞ=p
XN

i= 1

ði− 1Þ=p
NðN− 1Þ

2
: [3]

The BAG model produces networks with a binomial degree distribution,
because it is equivalent to an Erdös–Rényi random graph model, in which
each of the NðN− 1Þ=2 potential links appears with probability p (31).

We also introduced a second model of accelerated growth, called hidden-
variable accelerated growth (HAG). In general, hidden-variable models
produce networks with a prescribed degree distribution: the HAG model
grows random networks having, on average, the same degree distribution
observed in the adult C. elegans neural network. The model works as follows.
We assign to each node j of the network, once and for all, a hidden variable hj .
In particular, we set hj = kad

j , where kad
j is the degree of node j in the adult

worm. When a new node i arrives, it tries to establish a link with each of the
nodes in the network, and a link to node j is created with probability

ΠHAG
i→j =p

hj

hmax
; [4]

where hmax is the maximum of hj over j and p is appropriately selected to
reproduce the final number of links. It is possible to prove that the final
degree of a node i over different network realizations is Poisson distributed
around an average value equal to kad

i . Consequently, networks produced by
HAG show an accelerated growth similar to that generated by the BAG
model while also preserving the actual degree distribution of the C. elegans
neural network.

ESG. To create networks embedded in Euclidean space (5, 6), we considered
the economical spatial growth model, which is based on a tradeoff between
the tendency to create topologically important connections to hubs and the
physical distance between neurons. When a new node i arrives, it is placed in
the position it occupies in the adult worm, and a link to each of the existing
nodes is created with probability

ΠESG
i→j =

hj

hmax
e−

dad
ij
δ ; [5]

where the values hj are assigned as in the HAG model and δ is a parameter
tuning the typical connection distance. Namely, the probability of creating
a link exponentially decreases with the Euclidean distance dad

ij that separates

7884 | www.pnas.org/cgi/doi/10.1073/pnas.1300753110 Nicosia et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
9,

 2
02

1 

www.pnas.org/cgi/doi/10.1073/pnas.1300753110


www.manaraa.com

i and j in the adult worm, and is weighted by the hidden variable hj = kad
j (to

preserve the actual degree distribution of the C. elegans neural network).

ESTG. The economical spatio-temporal growth model, using information about
the length of the worm at different stages, takes into account the actual spatial
position of each neuron while the worm grows over time. When a new node i
arrives, it is placed in the position it occupies in the C. elegans neural network
at time t, and a link to each of the existing nodes is created with probability

ΠESTG
i→j =

hj

hmax
e−

dij ðtÞ
δ ; [6]

where the values hj are assigned as in the HAG model and δ is a parameter
tuning the typical edge length. Notice that the probability to establish a link
depends on the time at which node i appears, because the distance dijðtÞ
depends on the relative positions of i and j, which change over time because
of elongation of the worm’s body. We considered the real length of the
worm at each time, and we estimated the position of each node at that time
using linear interpolation and assuming a uniform expansion of the worm
along the longitudinal axis.

Parameter Tuning. The first requirement of any suitable model for the
C. elegans neuronal network growth is to produce networks having N=279
nodes and, on average, K = 2; 287 edges, as observed in the adult worm. We
used Monte Carlo simulations and iterative bisection to identify the interval
in the parameter space for which the expected total number of edges ~K of
the generated networks was equal to 2; 287± 1%; see SI Appendix, section
S3 for methodological details and the optimal parameter values for each of
the eight models in SI Appendix, Table S-I.

Degree Distribution. Given an undirected graph GðV ; EÞ associated with the
symmetric adjacency matrix A= faijg, the degree of a node i is defined as the
number of edges incident on i, and is denoted by ki =

P
j aij . The degree

distribution PðkÞ of the graph indicates, for each value of k, the probability
of finding a node whose degree is equal to k.

Connection Distance Distribution. Given two directly connected nodes i and j
of a spatially embedded network, we define the distance of the edge ði; jÞ as
the Euclidean distance dij separating node i and node j. The distance dis-
tribution PðdÞ is the probability of finding an edge whose distance is exactly
equal to d.

Node and Graph Efficiency. Given an undirected and unweighted graph G, the
efficiency of a node is defined as

Ei =
1

N−1

XN

j= 1
j≠ i

1
λij
; [7]

where λij is the path length between node i and node j, measured as the
number of edges in the shortest path connecting i to j. The smaller the λij ,
the larger the contribution of node j to the efficiency of i. The efficiency of
a graph is defined as the average efficiency of its nodes.
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